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A model for the stress tensor in granular flowsfVolfson, Tsimring, and Aranson, Phys. Rev. Lett.90, 254301
s2003dg is correctly generalized to an objective form that is independent of the coordinate system. The objec-
tive representation correctly models the isotropic and anisotropic parts of the stress tensor, whereas the original
model for stress tensor components is dependent on the coordinate system. This general objective form of the
model also relaxes the assumption in the original model that the principal axes of the granular stress tensor be
coaxial with that of the “fluid” stress tensor. This generalization expands the applicability of the model to a
wider class of granular flows. The objective representation is also useful in analyzing other models based on
additive decomposition of the stress tensor in granular flows.
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I. INTRODUCTION

Granular flows can exhibit different types of material
characteristics and constitutive behavior, depending on the
volume fraction and the magnitude of applied shear rate
srelative to relevant particle time scalesd. Many recent
attemptsf1–3g to characterize the stress in granular flows
involve an additive decomposition of the granular stress. In a
recent continuum theory proposed by Aranson and Tsimring
sATd f1g, the stress tensorsi j in a granular flow is decom-
posed intosi j

f , a “fluid” part, andsi j
s a “solid” part. Models

are then proposed for the “fluid” and “solid” parts. Similar
decompositions into impulsive and enduring partsf2g, or
kinetic and frictional partsf3g, are common in the granular
flow literature.

It is important to note that although the term “fluid” or
“fluidlike” is used in the granular flow literature, this is po-
tentially misleading since it may imply that the systems un-
der consideration are granular mixturesssolid particles with
interstitial fluidd. The focus of this worksand those cited in
Refs.f1,2gd is on the decomposition of theparticulate solid
stressinto “solidlike” and “fluidlike” parts. If the ambient
fluid is present, as in the case of granular mixtures, then an
additional stress associated with the fluid will appear in the
modelsssee Ref.f3g for exampled. With this clarification the
quotation marks on fluid and solid are dropped.

In the AT model f4,5g, the fluid and solid parts of the
stress tensor are modeled in terms of the granular stress ten-
sor si j . It is then assumed that the principal axes of all the
stress tensors are coaxial. The coefficients in the AT model
swhich are ratios of stress componentsd are then determined
by matching individual components of the fluid stress tensor

to data obtained from molecular dynamicssMDd simulations
of zero-gravity Couette flowf4,5g.

Models for the fluidsor solidd stress tensor which require
specification of coefficients that depend on ratios of indi-
vidual stress components are obviously coordinate-system
dependent, and do not guarantee the important requirement
that the stress tensor be objectivef6g. In Euclidean space the
objectivity requirement is that the tensor components in dif-
ferent coordinate systems satisfy a transformation rulessee
for example Malvernf15gd. Therefore models such as the AT
model are not general, but are restricted to the coordinate
system and flow configurations in which they are specified.
Specifically, it is unclear how to generalize the AT model,
which is formulated for two-dimensionals2Dd Couette
flow,1 to a coordinate-system-independent form so that it
may be applied to granular flows in more complex 3D ge-
ometries. Here we show how the AT model may be general-
ized to 3D, while satisfying the objectivity requirement.

If the fluid and solid parts of the stress tensor are modeled
in terms of the granular stress tensorsi j , the general objec-
tive form of the decomposition can obtained by using repre-
sentation theoremsf7,8g. The assumption of coaxial principal
axes for all the stress tensors is shown to be unnecessary, and
an objective model which does not require this assumption is
derived. The special case of coaxial principal axes is sub-
sumed in the general objective form. This objective model is
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1More precisely this is a 2C flow, where by 2C we mean that the
componentialityf13g of the stress tensor is 2, i.e., the stress tensor
has only two nonzero singular values and the component index
range isi , j =1,2. A 2D simulation can at best yield a 2C stress
tensor, whereas in 3D the stress tensor can be either 3C or 2C. For
simplicity of exposition we assume the stress tensor is nonsingular
in the rest of this paper, in which case componentiality and dimen-
sionality are the same.
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easily extended to 3D. While the AT model in 2D specifies
three model coefficients, it is shown that proper application
of the requirement of objectivity results in fewer coefficients:
only two coefficients can be independently specified for this
tensor decomposition. The objective model also shows that
the stress components can only be matched in a least-squares
sensef9–11g, regardless of the assumption of coaxial princi-
pal axes for all stress tensors. The objective form of the
granular stress tensor decomposition is essential to compute
granular flows using constitutive relations in continuum two-
fluid formulations such asMFIX f12g. The physical signifi-
cance of using the objective formswhich allows for nonco-
axial stress tensorsd is that it extends the applicability of the
model to granular flows with nonspherical grains, or other
sources of noncoaxiality.

II. DECOMPOSITION OF GRANULAR STRESS

The basic idea in AT’s additive stress decomposition is to
express the stress tensor in a granular flow as the sum of a
fluid stress tensor and a solid stress tensor:

si j = si j
f + si j

s . s1d

The goal is to propose models for each of the solid and fluid
parts in terms of an order parameterr and the granular stress
tensorsi j , and thereby come up with a model for stress in the
granular flow. The order parameterr is defined by Volfsonet
al. f4g as a mesoscopic space-time average fraction of solid-
like contacts between the particles in the granular system.sA
contact is considered “solidlike” if it is in a stuck state and
its duration is longer than a typical collision time. Additional
details of the calculation of the order parameter from MD are
given in f4g.d Aranson and Tsimringf1g express the fluid
stress in terms of the granular stress, the general form of such
a model being

s f = M ssd, s2d

whereM is an isotropic tensor function in the sense of Smith
and Smithf7g. fIsotropic tensor functions satisfy the invari-
ance property of Eq.s3d when subjected to unitary transfor-
mations.g The remaining stress that is obtained by subtract-
ing the fluid stress from total stress is denoted the solid
stress.

III. OBJECTIVE FORM

The objectivity requirement is that ifs f is an isotropic
tensor functionM of the tensors as in Eq.s2d, andQ is an
arbitrary unitary transformation of the coordinate axes, such
that

s f* = Qs fQT

is the “fluid” stress tensor in the transformed coordinate sys-
tem, then

QM ssdQT = M sQsQTd. s3d

It is convenient to express the granular stresssi j , a
second-order tensor that is assumed to be symmetric,2 in
isotropic and deviatoric parts:

si j =
1

3
siidi j + ti j = s0hdi j + bijj, s4d

whereti j is the symmetric deviatoric stress defined as

ti j = si j −
1

3
siidi j , s5d

and bij is the normalized, symmetric, traceless, anisotropy
tensor defined as

bij =
1

s0
ti j =

1

s0
si j − di j . s6d

Heres0=sii /3 is the scale of the stress.3 sEinstein notation is
used so summation is implied over repeated indices.d

An objective form4 in which the fluid sor solidd stress
tensor may by expressed as a function of the granular stress
tensor is

si j
f = s0Hadi j + bbij + gFsb2di j −

1

3
sb2dlldi jGJ s7d

wherea, b, g are undetermined scalar coefficients that are
functions of the invariants ofbij and the order parameterr.
sNote thatbij has zero trace by definition, so only its second
and third invariants may be nonzero.d The components of the
second-order tensorb2 are defined as

sb2di j = bikbkj, s8d

and sb2dll is a scalar that is defined as

sb2dll = blkbkl. s9d

If the solid stress tensor is also represented in a similar
form, then the requirement that the fluid and solid stresses
sum to the granular stress requires that the solid stress model
expression be

2The stress tensor in granular flows is assumed to be symmetric
f14g. However, in particle dynamics simulations which incorporate
angular momentum transfer between particles, this assumption
needs to be verified. Malvernf15g states that a symmetric stress
tensor is implied by the moment of momentum principle for a col-
lection of particles interacting through equal, opposite, and collinear
forces, but the symmetry property is lost when even equal and
opposite couples are included. Nevertheless, the objectivity require-
ments that we impose here can be extended to the general nonsym-
metric stress tensor by decomposing it into symmetric and skew-
symmetric parts.

3In 2D the scale of the stress is defined ass0=sii /2, and appro-
priate modifications are needed for the definition of the deviatoric
and anisotropy tensors.

4This simpler version of the more general form proposed by Pope
f16g follows from Eq.s2d.

GAO et al. PHYSICAL REVIEW E 71, 021302s2005d

021302-2



si j
s = s0Hs1 − addi j + s1 − bdbij − gFsb2di j −

1

3
sb2dlldi jGJ .

s10d

Clearly one can exactly match three components of the
fluid stress tensor modelsor the solid stress model, but not
bothd to data from MD simulations by specifying the three
model coefficientsa, b, g. In a 3D granular flow there are
six independent nonzero components of the fluid stress ten-
sor. Therefore one can specify the three model coefficientsa,
b, g to match the six components from simulation data only
in a least-squares sensef9–11g.

In the 2D case one can show that the characteristic equa-
tion for the stress tensor is a quadraticsinstead of a cubic for
the 3D cased, and there are only two invariantssinstead of
three for the 3D cased: the sum and product of the two prin-
cipal values of the stress tensor. The Cayley-Hamilton theo-
rem in the 2D case shows thatb2 sinstead ofb3 in the 3D
cased itself can be expressed as a linear combination ofb,
and therefore the term ing is redundant and can be dropped.
Then there are only two coefficientsa andb. Noting that in
2D there are three independent nonzero components of the
fluid stress tensor, again the two coefficients must be deter-
mined by matching the three stress components in a least-
squares sense.

The accuracy of the “fluid” stress model for a given set of
data is defined in terms of thep-norm f11g of the error ma-
trix, which is defined as the difference between the modeled
“fluid” stress tensor and the data. Here we usep=1 and
define the matrix error measure asx:

x = ismodel
f − sdata

f i1/isdata
f i1. s11d

This measure of modeling error is useful because it applies
to all the models considered in this study.

Another way to measure the errors is specific to the ob-
jective model and results in the norm of an error vector. For
the 2D case the objective form of stress tensor representation
in Eq. s7d has three equations and two unknowns, which
requires solving

3s0 s11 − s0

0 s12

s0 s22 − s0
4Fa

b
G = 3s11

f

s12
f

s22
f 4 . s12d

In matrix notation this least-squares problem is

Kx = y

with K the coefficient matrix, andx the unknown vector of
model coefficients. The error in the objective model can also
be quantified by calculating the vector norm of the relative
error in the least-squares solution:

« = iKx − yi2/iyi2. s13d

Using the datass, s f, and r from Figs. 6, 7, and 8d
reported in Volfsonet al. f4g we obtain the coefficients for
the objective model. The values of the coefficientsa andb
in the objective model are shown as functions of the order
parameterr in Fig. 1. As expected the coefficients approach
1 as the order parameterr approaches zero, corresponding to

the granular flow reaching the fully fluidized state. It is also
to be expected that the coefficients will approach zero as the
order parameterr approaches 1. In this case it would be
preferable to solve for the model coefficients of the “solid”
stress tensor,s1−ad ands1−bd. The errors incurred in terms
of the matrix normx and the vector norm« are depicted in
Fig. 2. Over the entire range of the order parameters0.1
,r,1.0d it is gratifying to note that the errors of the objec-
tive model are less than 10%. Asr approaches zero the
granular flow becomes more fluidized, and the error drops
rapidly si.e., the “solid” stress is negligibled. Therefore, for
the granular Couette flow the objective formfEqs. s7d and
s10dg accurately decomposes the stress into “fluid” and
“solid” parts with the following expressions that fit the varia-
tion of model coefficients with order parameter:

a = s1 − rd1.8, s14d

b = s1 − rd2.5. s15d

These expressions ensure the correct limiting behavior of the
model atr=0 and 1.

IV. COAXIAL PRINCIPAL AXES CASE

In the AT model it is assumed that the principal axes of all
three stress tensorss, s f, and ss are coaxial. The coeffi-
cients in the AT model are then determined by matching

FIG. 1. Model coefficients as functions of order parameterr: a
andb for the general objective form, andaCPA andbCPA sfor mod-
els OCPA0 and OCPAfd for the equivalent objective form assuming
coaxial principal axes.

FIG. 2. Error in modeled “fluid” stress characterized by matrix
one-normx for all models: general objective and equivalent objec-
tive under coaxial principal axes assumptionsOCPA0 and OCPAfd.
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individual componentssxx, sxy, syy of the fluid stress tensor
to data obtained from molecular dynamics simulations of a
canonical granular flowf1,4g.

The objective model can be investigated under the as-
sumption of coaxial principal axes. If the objective model is
written in principal axes coordinates, then the deviatoric ten-
sor is diagonal and given by

ti j = ssiddi j − s0di j . s16d

The normalized symmetric traceless anisotropy tensorbij is
also diagonal and is given by

bij = Fssid

s0
− 1Gdi j . s17d

In the 2D case there are only two coefficientsa and b.
Note that in principal coordinates we have

s1
f = as0 + bss1 − s0d,

s2
f = as0 + bss2 − s0d.

By eliminatinga andb from the above equations we obtain
the equivalentobjectivespecification of the coaxial principal
axessCPAd model to be

aCPA =
s1

f

s0
− Ss1

f − s2
f

s1 − s2
Dss1 − s0d, s18d

bCPA =
s1

f − s2
f

s1 − s2
. s19d

A technical detail arising from nonzero angle between the
principal axes of the fluid and total granular stress data re-
sults in two slightly different ways in which the CPA model
coefficients can be calculated. In both approachess1 ands2
in Eqs. s18d and s19d are the singular values of the total
granular stress matrix. In the first approachsOCPAfd we use
the singular values of the “fluid” stress matrix forss1

f ,s2
f d,

even though the principal directions of the fluid and total
stress tensors are not identical. In the second approach
sOCPA0d, the “fluid” stress tensor is transformed into the
principal coordinates of the total stress tensor, and the diag-
onal components of the transformed matrix are taken to be
ss1

f ,s2
f d. The values ofaCPA and bCPA as a function of the

order parameterr are shown in Fig. 1.
It is found thataCPA is practically identical toa for the

objective model without the coaxial principal axes assump-
tion. There are some differences betweenbCPA andb for the
objective model without the coaxial principal axes assump-
tion. The modeling error measurex is shown for both models
in Fig. 2, and it is found that the error incurred in the various
models is comparable.

V. VALIDITY OF COAXIAL PRINCIPAL AXES
ASSUMPTION

Denoting the principal axes ofs ashu1,u2j, and similarly
the principal axes ofs f ashu1

f ,u2
f j f11g, one can calculate the

angleu between the principal axes ofs ands f as

u = arccossuu1 ·u1
f ud = arccossuu2 ·u2

f ud. s20d

The angles for the data obtained from Volfsonet al. f4g are
shown in Fig. 3. It is found that the maximum angle between
the two principal axis systems is about 8°, so the principal
axes of the stress tensors are almost collinear. Asr de-
creases, the angle increases to the maximum, and then drops
rapidly when r approaches zero. Whether this near-
collinearity of the stress tensors is a universal characteristic
of granular flow in this regime is questionable. Certainly
coaxial principal axes are not expected if the grains are an-
isotropic se.g., ellipsoidsd.

The small angle between the principal axes explains why
the orthotropic model incurs errors that are of the same mag-
nitude as the objective model for this flow. We also see from
Figs. 2 and 3 that the modeling errors follow the same trend
as the angle between the principal axes. The small angle
between the principal axes also explains why the model co-
efficients with the coaxial principal axes assumption
saCPA,bCPAd are very close to the general objective model.
One may expect larger differences in other granular flows,
although these comparisons are difficult to make because
only the objective model is truly generalizable and indepen-
dent of the coordinate system.

VI. OBJECTIVE MODEL PERFORMANCE IN THICK
GRANULAR LAYER

Volfson et al. f4g also report MD simulations for a thick
granular layer under nonzero gravity driven by a moving
upper plate, a granular system that is different from the zero-
gravity Couette flow with which the model coefficients were
calibrated. The objective model is tested in this thick granu-
lar system, and these results of the model predictions for the
granular layer driven by a moving upper plate under nonzero
gravity f4g scase P10V5d are shown in Fig 4. The agreement
of the objective model’s predicted stresses to the simulation
data is remarkably good.

VII. CONCLUSIONS

An objective generalization of the stress model based on
the order parameterf4,5g has been developedfsee Eqs.s7d,

FIG. 3. Angle between principal axes of the total granular stress
s and the “fluid” stresss f.
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s14d, ands15dg. The objective model does not assume that the
principal axes of the “fluid” and total granular stress are co-
axial. The objective model has fewer model coefficients than
the original model and therefore the “fluid” stress is matched
only in a least-squares sense. Model coefficients and error
measures are compared for both the general objective model
and the equivalent objective model under coaxial principal
axes assumption. It is found that the error is comparable for
both models and is below 10% for all values of the order
parameter in the Couette flow configuration for which data
from MD are available.

The angle between principal axes ofs and s f is com-
puted and it was found to increase sharply at very smallr
sr,0.1, fluidlike regimed, reach a maximum of about 10°

for the granular Couette flow, and then decrease again at
larger r ssolidlike regimed. The modeling errors follow the
same trend. This nonlinear variation with order parameterr
tells us that the stress in granular matter does not become
fluidlike in direct proportion to the order parameterr. Fur-
ther study is needed to understand if the discontinuity in the
angle that is observed aroundr=0.05 is indicative of a sort
of phase transition, or not. The objective model is used to
predict the stresses in adifferent granular system from the
one using which the model coefficients were calibratedsthin
Couette flow with zero gravityd. In this thick granular flow
driven by a moving upper plate under nonzero gravity, the
objective model predictions are in excellent agreement with
the simulation data, even though the objective model has
fewer coefficients than the previous model. However, a more
rigorous test of the objective model would require data from
MD of a fully 3D granular flow for a range of order param-
eter and stress tensor anisotropy values.
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