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Objective decomposition of the stress tensor in granular flows
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A model for the stress tensor in granular floWwslfson, Tsimring, and Aranson, Phys. Rev. Led0, 254301
(2003] is correctly generalized to an objective form that is independent of the coordinate system. The objec-
tive representation correctly models the isotropic and anisotropic parts of the stress tensor, whereas the original
model for stress tensor components is dependent on the coordinate system. This general objective form of the
model also relaxes the assumption in the original model that the principal axes of the granular stress tensor be
coaxial with that of the “fluid” stress tensor. This generalization expands the applicability of the model to a
wider class of granular flows. The objective representation is also useful in analyzing other models based on
additive decomposition of the stress tensor in granular flows.
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I. INTRODUCTION to data obtained from molecular dynami®4D) simulations
o _ of zero-gravity Couette flo4,5].

Granular flows can exhibit different types of material  \odels for the fluid(or solid) stress tensor which require
characteristic_s and constitutive .behavior, depending on th§pecification of coefficients that depend on ratios of indi-
volume fraction and the magnitude of applied shear ratg;jqual stress components are obviously coordinate-system
(relative to relevant particle time scalesMany recent gependent, and do not guarantee the important requirement
attempts[1-3] to characterize the stress in granular flowsthat the stress tensor be object[@. In Euclidean space the
involve an additive decomposition of the granular stress. In gpjectivity requirement is that the tensor components in dif-
recent continuum theory pro_posed by Aranson _and Tsimringerent coordinate systems satisfy a transformation (séz
(AT) [1] the stress tensar; in a granular flow is decom- for example Malverrj15]). Therefore models such as the AT
posed intooy;, a “fluid” part, andor; a “solid” part. Models  model are not general, but are restricted to the coordinate
are then proposed for the *fluid” and “solid” parts. Similar system and flow configurations in which they are specified.
decompositions into impulsive and enduring pai?3, or  gpecifically, it is unclear how to generalize the AT model,
kinetip and frictional part$3], are common in the granular which is formulated for two-dimensiona(2D) Couette
flow literature. flow,' to a coordinate-system-independent form so that it

It is important to note that although the term “fluid” or may be applied to granular flows in more complex 3D ge-
“fluidlike” is used in the granular flow literature, this is po- gmetries. Here we show how the AT model may be general-
tentially misleading since it may imply that the systems un-jzeq to 3D, while satisfying the objectivity requirement.
der consideration are granular mixtureslid particles with If the fluid and solid parts of the stress tensor are modeled
interstitial fluid). The focus of this workand those cited in i, terms of the granular stress tensgy, the general objec-
Refs.[1,2]) is on the decomposition of thearticulate solid  tiye form of the decomposition can obtained by using repre-
stressinto “solidlike” and *fluidlike” parts. If the ambient  sentation theoren{s,8]. The assumption of coaxial principal
fluid is present, as in the case of granular mixtures, then agyes for all the stress tensors is shown to be unnecessary, and
additional stress associated with the fluid will appear in thegyp objective model which does not require this assumption is
models(see Ref[3] for example. With this clarification the  gerived. The special case of coaxial principal axes is sub-

quotation marks on fluid and solid are dropped. sumed in the general objective form. This objective model is
In the AT model[4,5], the fluid and solid parts of the

stress tensor are modeled in terms of the granular stress teA—— o

sor ay;. It is then assumed that the principal axes of all the “More precisely this is a 2C flow, where by 2C we mean that the
stress tensors are coaxial. The coefficients in the AT modeqomponentlallt),{lB] of the stress tensor is 2, i.e., the stress tensor
(which are ratios of stress componendse then determined has only two nonzero singular values and the component index

by matching individual components of the fluid stress tensof®"9¢ isi,j:1,2._ A 2D sinulation can at best V‘?"d a 2C stress
y 9 P tensor, whereas in 3D the stress tensor can be either 3C or 2C. For

simplicity of exposition we assume the stress tensor is nonsingular
in the rest of this paper, in which case componentiality and dimen-
*Corresponding author. Electronic address: shankar@iastate.edsionality are the same.
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easily extended to 3D. While the AT model in 2D specifies It is convenient to express the granular stregs a
three model coefficients, it is shown that proper applicationsecond-order tensor that is assumed to be symmétiit,
of the requirement of objectivity results in fewer coefficients:isotropic and deviatoric parts:

only two coefficients can be independently specified for this
tensor decomposition. The objective model also shows that
the stress components can only be matched in a least-squares
sensg 9-11], regardless of the assumption of coaxial princi-
pal axes for all stress tensors. The objective form of thevherer; is the symmetric deviatoric stress defined as
granular stress tensor decomposition is essential to compute
granular flows using constitutive relations in continuum two-
fluid formulations such asrix [12]. The physical signifi-
cance of using the objective forfwhich allows for nonco-
axial stress tensorss that it extends the applicability of the and b;; is the normalized, symmetric, traceless, anisotropy
model to granular flows with nonspherical grains, or othertensor defined as

sources of noncoaxiality.

1
gjj = 5%5@ +7ij = oo{ & + by}, (4)

i) = 0 ~ 36, 5

1 1
bij = —m; = —oy — G- (6)
II. DECOMPOSITION OF GRANULAR STRESS g0 g0

The basic idea in AT’s additive stress decomposition is toHereo,=0;;/3 is the scale of the stred$Einstein notation is
express the stress tensor in a granular flow as the sum ofuwsed so summation is implied over repeated indjces.
fluid stress tensor and a solid stress tensor: An objective forn? in which the fluid (or solid) stress

tensor may by expressed as a function of the granular stress
o =0l + 0. (1)  tensoris

The goal is to propose models for each of the solid and fluid f_ 2 1.,
partsgin terms gf a% order parameteand the granular stress i = 00{ ad + by + 7[(b )i~ E(b )”5”'” @)
tensoro;;, and thereby come up with a model for stress in the
granular flow. The order parameteis defined by Volfsoret ~ where«, B, y are undetermined scalar coefficients that are
al. [4] as a mesoscopic space-time average fraction of solicunctions of the invariants df; and the order parameter
like contacts between the particles in the granular systdm. (Note thatb;; has zero trace by definition, so only its second
contact is considered “solidlike” if it is in a stuck state and and third invariants may be nonzerdhe components of the
its duration is longer than a typical collision time. Additional second-order tensd? are defined as
details of the calculation of the order parameter from MD are
given in [4].) Aranson and Tsimring1] express the fluid (b%);j = byby;, (8)

stress in terms of the granular stress, the general form of such o ) .
a model being and(b?), is a scalar that is defined as

o' =M(o), 2) (b?) = byby. 9

) . ] o ) If the solid stress tensor is also represented in a similar
whereM is an isotropic tensor function in the sense of Smlthform, then the requirement that the fluid and solid stresses

and Smith[7]. [Isotropic tensor functions satisfy the invari- sym to the granular stress requires that the solid stress model
ance property of Eq(3) when subjected to unitary transfor- gynression be

mations] The remaining stress that is obtained by subtract-

ing the fluid stress from total stress is denoted the solid——
stress. “The stress tensor in granular flows is assumed to be symmetric

[14]. However, in particle dynamics simulations which incorporate

angular momentum transfer between particles, this assumption
1. OBJECTIVE FORM needs to be verified. Malverfl5] states that a symmetric stress
tensor is implied by the moment of momentum principle for a col-

The objectivity requirement is that i is an isotropic lection of particles | ina th h | : d colli
tensor functiorM of the tensoro as in Eq.(2), andQ is an ection of particles interacting through equal, opposite, and collinear
N forces, but the symmetry property is lost when even equal and

arbitrary unitary transformation of the coordinate axes, Sucr3>pposite couples are included. Nevertheless, the objectivity require-

that ments that we impose here can be extended to the general nonsym-
N T metric stress tensor by decomposing it into symmetric and skew-
o =QoQ symmetric parts.
) ] ) ) 3In 2D the scale of the stress is definedas o;i/2, and appro-
is the “fluid” stress tensor in the transformed coordinate SySpriate modifications are needed for the definition of the deviatoric
tem, then and anisotropy tensors.
“This simpler version of the more general form proposed by Pope
QM (0)Q"=M(QoQ). 3) [16] follows from Eq.(2).

021302-2



OBJECTIVE DECOMPOSITION OF THE STRESS PHYSICAL REVIEW E 71, 021302(2009

l T T T T
S — 2 “(h2 —
o = 0‘0{(1 —a)5; + (1 - Py - 7[(13 )ij ~ 3(b i @j]}- o8 ° ;((OO:,J::::))
x o (OCPAf)
(10 B (OCPAf)
0.6F . + o (OCPAQ)
Clearly one can exactly match three components of the T > BOFAD
fluid stress tensor modébr the solid stress model, but not 04f
both) to data from MD simulations by specifying the three
model coefficientsy, B, y. In a 3D granular flow there are e I N\ N
six independent nonzero components of the fluid stress ten- N I, e S
sor. Therefore one can specify the three model coefficients Y 02 04 06 08
B, v to match the six components from simulation data only
in a least-squares senge-11]. FIG. 1. Model coefficients as functions of order parametes

In the 2D case one can show that the characteristic equand g for the general objective form, ane:p, and Bcpa (for mod-
tion for the stress tensor is a quadrdtitstead of a cubic for els OCPAO and OCPAffor the equivalent objective form assuming
the 3D casg and there are only two invariant;istead of  coaxial principal axes.
three for the 3D cagethe sum and product of the two prin-
cipal values of the stress tensor. The Cayley-Hamilton theothe granular flow reaching the fully fluidized state. It is also
rem in the 2D case shows that (instead ofb® in the 3D  to be expected that the coefficients will approach zero as the
casg itself can be expressed as a linear combinatiot,of order parametep approaches 1. In this case it would be
and therefore the term i is redundant and can be dropped. preferable to solve for the model coefficients of the “solid”
Then there are only two coefficientsand 8. Noting that in  stress tensofl—a) and(1-). The errors incurred in terms
2D there are three independent nonzero components of the the matrix normy and the vector norne are depicted in
fluid stress tensor, again the two coefficients must be detegig. 2. Over the entire range of the order paramétel
mined by matching the three stress components in a least- ,<1.0) it is gratifying to note that the errors of the objec-
squares sense. _ _ tive model are less than 10%. As approaches zero the
The accuracy of the “fluid” stress model for a given set of granylar flow becomes more fluidized, and the error drops

data is defined in terms of thenorm [11] of the error ma-  5pidly (i.e., the “solid” stress is negligible Therefore, for
trix, which is defined as the difference between the modeleghe granular Couette flow the objective foffiigs. (7) and

“fluid” stress tensor and the data. Here we ysel and  (10)] accurately decomposes the stress into “fluid” and

define the matrix error measure gs “solid” parts with the following expressions that fit the varia-
x =0t oge= Thadi/ll ol (11)  tion of model coefficients with order parameter:
This measure of modeling error is useful because it applies a=(1-p*% (14)
to all the models considered in this study.
Another way to measure the errors is specific to the ob- B=(1-p)?S. (15)

jective model and results in the norm of an error vector. Fo . th t limiting behavior of th
the 2D case the objective form of stress tensor representatio %S? e?pi%ssmgslensure € correct imiting behavior of the
in Eq. (7) has three equations and two unknowns, whichMode! alp=0 and L.

requires solving
IV. COAXIAL PRINCIPAL AXES CASE

0p 011 ~O0p 011 - .
0 al | ; 12 In the AT model it is assumed that the principal axes of all
712 g~ 912 |- 12 three stress tensois, o', and o° are coaxial. The coeffi-
0p 022 ~O0p afzz cients in the AT model are then determined by matching
In matrix notation this least-squares problem is .
10 T T T T v T v
Kx =y O Objective
x QCPAf
with K the coefficient matrix, anet the unknown vector of 0'lge 8 g g o OcPA0 |
model coefficients. The error in the objective model can also . 8
be quantified by calculating the vector norm of the relative =100 f g
error in the least-squares solution:
e =[Kx -yl 13 s
Using the data(o, o', and p from Figs. 6, 7, and B . . . .

reported in Volfsonet al. [4] we obtain the coefficients for 0% 02 04 06 08

the objective model. The values of the coefficieatand 8

in the objective model are shown as functions of the order FIG. 2. Error in modeled “fluid” stress characterized by matrix
parametep in Fig. 1. As expected the coefficients approachone-normy for all models: general objective and equivalent objec-
1 as the order parametgrapproaches zero, corresponding totive under coaxial principal axes assumpti@CPAO and OCPAf
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individual componentsy, oy, ay, of the fluid stress tensor . ' ' '
to data obtained from molecular dynamics simulations of a 8 ¢ i
canonical granular flowa1,4]. .
The objective model can be investigated under the as- ,\63 i
sumption of coaxial principal axes. If the objective model is %"
written in principal axes coordinates, then the deviatoric ten- o 4T . 1
sor is diagonal and given by
2_ -
*
Tij = 0()8j ~ 000 - (16) .
i i i . 0, 1 e 1 S
The normalized symmetric traceless anisotropy teigois 0 02 o 0.6 08
also diagonal and is given by
FIG. 3. Angle between principal axes of the total granular stress
bij - {@ 1] 5”__ (17) o and the “fluid” stress™.

. inci f
In the 2D case there are only two coefficientsand 8.~ @ngle ¢ between the principal axes of and o as

Note that in principal coordinates we have 6=arccofu, - u') = arccoglu, - ul)). (20)
f_ .
01 = aoy+ oy = 0p), The angles for the data obtained from \olfsenal. [4] are
shown in Fig. 3. It is found that the maximum angle between
cer: agy+ Bloy— oy). the two principal axis systems is about 8°, so the principal

axes of the stress tensors are almost collinear.pAde-
. ivalenobiecti ificat f th ial orincipal creases, the angle increases to the maximum, and then drops
ee(qéjlla\gen dJ(IECt: 'VESpeC' Ication of the coaxial principa rapidly when p approaches zero. Whether this near-
axes model to be collinearity of the stress tensors is a universal characteristic
of (Ufl_gfz)( ) of granular flow in this regime is questionable. Certainly
- 017~ 00/,

By eliminating « and 8 from the above equations we obtain

acppa= (18) coaxial principal axes are not expected if the grains are an-
0 17 % isotropic (e.g., ellipsoids
_— The small angle between the principal axes explains why
Bepa= 01703 (19) the orthotropic model incurs errors that are of the same mag-
cPA o1— 0y nitude as the objective model for this flow. We also see from

. S Figs. 2 and 3 that the modeling errors follow the same trend
A technical detail arising from nonzero angle between theas the angle between the principal axes. The small angle

principal axes of the.fluid and tOt?' gfaf‘“'af stress data "®petween the principal axes also explains why the model co-
sults in two slightly different ways in which the CPA model efficients with the coaxial principal axes assumption

coefficients can be calculated. In both approaaheand o, (crepps Beps) are very close to the general objective model.

n qus. (1?) and (1t9)_ a:e ttt?ef_sw;gular \;(Ei@lalg;A?)f the total One may expect larger differences in other granular flows,
granuiar stress matrix. in Ine first appro we use although these comparisons are difficult to make because

: wfly i ; fof
the singular values .Of '.[he flg|d -stress matrix f.cwl’%)' only the objective model is truly generalizable and indepen-
even though the principal directions of the fluid and total%em of the coordinate system.

stress tensors are not identical. In the second approac
(OCPAO, the “fluid” stress tensor is transformed into the
principal coordinates of the total stress tensor, and the diag- VI. OBJECTIVE MODEL PERFORMANCE IN THICK
onal components of the transformed matrix are taken to be GRANULAR LAYER

(of,0%). The values ofacpp and Bepa as a function of the

order parametep are shown in Fig. 1. granular layer under nonzero gravity driven by a moving

It is found thatacpy, is practically identical tax for the O
L . . o upper plate, a granular system that is different from the zero-
objective model without the coaxial principal axes assump-

tion. There are some differences betweggp, and B for the grayny Couette f'OW V\{'th which t.he model_ coeﬁmgnts were
T . : Ay calibrated. The objective model is tested in this thick granu-

objective model without the coaxial principal axes assumpy -

. . . lar system, and these results of the model predictions for the

tion. The modeling error measugds shown for both models

P i . : .~ _granular layer driven by a moving upper plate under nonzero
aoFAgiszisaggr::Aergtljlgd that the error incurred in the Vanousgravity [4] (case P10Vphare shown in Fig 4. The agreement

of the objective model’s predicted stresses to the simulation
data is remarkably good.

Volfson et al. [4] also report MD simulations for a thick

V. VALIDITY OF COAXIAL PRINCIPAL AXES
ASSUMPTION VIl. CONCLUSIONS

Denoting the principal axes a@f as{u,,u.}, and similarly An objective generalization of the stress model based on
the principal axes o&" as{ufl,u;} [11], one can calculate the the order parametd#,5] has been developddee Eqs(7),
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1 ' ' ' ' for the granular Couette flow, and then decrease again at
ol . -- modeled{“/% ] larger p (solidlike regime. The modeling errors follow the
QZ ’ %;1 m“é'“'“fy/"o ] same trend. This nonlinear variation with order parampter
" o6k 9\,& T modeled 0,0y | tells us that the stress in granular matter does not become
= q © 04/% ] fluidlike in direct proportion to the order parameferFur-
% 04 e 2 %% . ther study is needed to understand if the discontinuity in the
o R g L2l 1 angle that is observed aroupet0.05 is indicative of a sort
02r D\OQ T of phase transition, or not. The objective model is used to
0 %%b predict the stresses in different granular system from the
0 0.2 04 0 0.6 08 1 one using which the model coefficients were calibrdtedh

Couette flow with zero gravily In this thick granular flow

FIG. 4. Comparison of objective model predictions of “fluid” driven by a moving upper plate under nonzero gravity, the
stress components with MD data for a thick granular system driverobjective model predictions are in excellent agreement with
by a moving upper plate under nonzero gravity. the simulation data, even though the objective model has

o fewer coefficients than the previous model. However, a more

(14), and(15)]. The objective model does not assume that th&jqorous test of the objective model would require data from
prl_nC|paI axes of_ the “fluid” and total granular stress are Coip of 4 fully 3D granular flow for a range of order param-
axial. _The objective model has fewer m(_)del coefﬂ_ments thanster and stress tensor anisotropy values.
the original model and therefore the “fluid” stress is matched
only in a least-squares sense. Model coefficients and error
measures are compared for both the general objective model
and the equivalent objective model under coaxial principal
axes assumption. It is found that the error is comparable for The authors would like to thank Dmitri Volfson and Lev
both models and is below 10% for all values of the orderTsimring for providing them the data from their MD simula-
parameter in the Couette flow configuration for which datations. This manuscript has been authored at lowa State Uni-
from MD are available. versity of Science and Technology under Contract No.

The angle between principal axes aofand o' is com-  W-7405-ENG-82 with the U.S. Department of Energy. S.S.
puted and it was found to increase sharply at very small would like to thank Sankaran Sundaresan and Gary Grest for
(p<0.1, fluidlike regime, reach a maximum of about 10° useful comments on a draft of this article.
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